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Abstract. In some luminous supersoft X-ray sources, hydrogen accretes onto the sur-

face of a white dwarf at rates more-or-less compatible with steady nuclear burning.

The white dwarfs in these systems therefore have a good chance to grow in mass. Here

we review what is known about the rate of Type Ia supernovae that may be associated

with SSSs. Observable consequences of the conjecture that SSSs can be progenitors of

Type Ia supernovae are also discussed.

1 Introduction

1.1 The Quest for Type Ia Supernovae and Their Progenitors

Type Ia supernovae can provide important clues about the age and evolution

of the Universe. Several searches expected to significantly increase the discovery

rate of Type Ia supernovae are underway (see, e.g., Leibundgut et at. 1995,

and Pertmutter et al. 1995). The goal of the searches is to use these bright

events to measure cosmological parameters, particularly the Hubble constant,

H0, and the deceleration parameter, q0. The success of these programs depends

upon having a good understanding of the characteristics of Type la supernova

explosions. Of particular interest is the extent to which the maximum flux, light

curve profile, and spectral characteristics are uniform among Type la supernovae,

and the ability to quantify variations. To this end, an understanding of the

progenitor systems and of variations among progenitors would be important.

Yet the fundamental nature of the progenitors remains mysterious. We don't

even know whether the progenitors are all of one type, or whether there may

be several different types of progenitor. Livio (1996) has provided us with a

comprehensive review of progenitor models. Other recent reviews include those

by Wheeler (1996) and Branch et al. 1995.

1.2 Luminous Supersoft X-Ray Sources as Type Ia Progenitors

Rappaport, DiStefano, & Smith (RDS; 1994) proposed that close-binary super-

soft sources (CBSSs) might be Type Ia progenitors. They found that reliable

calculations of the rate of Type Ia supernovae that might be associated with

CBSSs required a much better understanding of the evolution of the systems

than was available at the time. To derive a first estimate they assumed (1) a

constant accretion rate, (2) conservative mass transfer, and (3) that the total
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mass of the white dwarf needed to grow to 1.4M O for a supernova to occur. If

it was further assumed that the accretion rate needed to be within the range of

rates compatible with steady burning throughout the evolution, the computed

rate was less than a tenth of that required. On the other hand, relaxing this
condition could yield rates in the requisite range. Thus, although conclusive re-

sults were not obtained, the possibility was open that CBSSs could contribute

substantially to the rate of Type Ia supernovae. Yungelson et al. (YLTTF; 1996)

took a somewhat different approach, and derived supernova rates compatible
with the lower limits computed by RDS, as did Canal, Ruiz-Lapuente, & Burk-

ert 1996. Although YLTTF did follow the complete evolution of some systems,

neither their calculations nor those of RDS addressed the fundamental problems

that prevented a first principle evolution to be carried out for many CBSSs.

Furthermore, neither investigation treated Roche-lobe-filling systems in which

the donor was very evolved at the start of mass transfer. Such systems can have

mass transfer rates in or near the steady nuclear burning region. Whereas for

CBSSs, rates of this magnitude are driven by the thermal time-scale readjust-
ment of the donor, when the donor is more evolved its nuclear evolution can

push the mass transfer rate into the requisite region. We will refer to Roche-

lobe-filling systems in which (1) rh can be within the range for steady burning

of hydrogen, and (2) the donor is initially more evolved than typical in CBSSs

(me(0) >-_ 0.2Mo), as wide-binary supersoft sources (WBSSs). The appearance

of such systems will depend on the mass transfer rate, the mass ejection rate,

and on the optical depth profile. They may or may not have the observational

characteristics of SSSs or of syrnbiotics. Whatever the observational signature,
WBSSs are characterized by the state of the donor, and the fact that there is an

epoch, while the donor fills its Roche lobe, during which the mass transfer rate

will allow for the more-or-less steady burning of hydrogen. The systems origi-

nally proposed by Whelan and Iben (1973) as Type Ia supernova progenitors, as

well as those considered by Hachisu, Kato and Nomoto (HKN; 1996) are subsets
of WBSSs.

Di Stefano et al. (DNLWR; 1996) reviewed some of the uncertainties faced in
computing the rate of supernovae predicted by the close-binary supersoft model,

and began to study the role of mass ejection. Similar work is ongoing for the

wide-binary supersoft model (DiStefano 1996a). This paper will focus on study

of the close-binary supersoft sources; the paper by DiStefano and Nelson (DN,

1996a) serves as a companion paper which includes much of the background
touched on more lightly here. Before proceeding with the details of completed

and ongoing work, however, it is worth taking a moment to review the context

in which the work takes place.

1.3 Promise and Problems

Although white dwarfs that achieve the Chandrasekhar mass, Me, have long
been thought to be progenitors of Type Ia supernovae, viable progenitor models

have not been easy to devise. This, in spite of the fact that several varieties of
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accretingwhitedwarfs,especiallycataclysmicvariables(CVs)andsymbiotics,
havebeenthesubjectof intensiveresearchduringrecentdecades.In CVs,for
example,thedonoris typicallya lowmassstarand,becausetheaccretionrate
is low,mostor all of themassit donatescanbelost in hydrodynamicevents
associatedwith episodesof nuclearburning.Theproblemwith symbioticsis
different.Eventhoughthedonormayhaveenoughmassto contributeinorder
to pushthe whitedwarfovertheChandrasekharlimit, andeventhoughthe
massaccretionratecanbecompatiblewith steadynuclearburning,themass
transferphaseis generallytooshort-livedfor mostwhitedwarfsto reachMc

(Kenyon et al. 1993). Recently, Yungelson et al. (1995) showed that wind-driven
symbiotics, in which the donor does not fill its Roche lobe, are likely to make

a negligible contribution to the rate of Type Ia supernovae if the white dwarf

needs to achieve the Chandrasekhar mass in order for an explosion to occur.

Given these difficulties, it has been suggested that accreting white dwarfs may

become Type Ia supernovae even if they do not reach Mc (see, e.g., Woosley
and Weaver 1994). The critical circumstance may instead be the ability to ac-

crete in such a way as to form a helium mantle of _ 0.1 - 0.2Mc_ around a
C-O white dwarf. There has been good deal of study and discussion about these

sub-Chandrasekhar progenitor models in recent years, but a consensus on the
likelihood that they constitute a large fraction of the observed Type Ia super-

novae has not yet emerged. However, even if it would become clear that reaching

the Chandrasekhar mass is not an absolute requirement, this might not much
change the rate of supernovae associated with some of the accreting white dwarf

models. For example, Yungelson et al. (1995) found that, even if the accretion

of as little as 0.1M o could lead to a supernova, symbiotics can account for at

most 1/3 of the rate inferred from observations.

It was against this backdrop that luminous supersoft X-ray sources burst onto

the scene. CBSSs seem, on the face of it to be perfect candidates for Type Ia

supernova progenitors. A significant fraction of the donors are massive enough

that they could donate sufficient mass to help their white dwarf companion

achieve Me. And the mass transfer rates can be within the range required for

steady nuclear burning. Thus, the white dwarfs can genuinely increase in mass.

Although the candidacy of CBSSs thus sounds promising, there are problems as

well. In fact, the very features that allow the mass transfer rate to be high enough

to be compatible with steady nuclear burning, the fact that the donor may be
more massive and also slightly evolved, also makes the candidacy of CBSSs as

Type Ia supernova progenitors somewhat problematic. This is because these

same features tend to be associated with unstable mass transfer, so that many

of the candidate systems risk a common envelope that would likely end the phase
of steady accretion onto the white dwarf.

In this paper we will not be able to resolve the uncertainties. Instead we will

attempt to clearly delineate them and the steps (both in rate computations and
other tests of SSS models) that can be taken to narrow them.
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2 Defining the Relevant Rates

It is importantto clearlydelineatethephysicalprocesseswhoserateswewould
liketo compute.Thefirsthypothesiswewouldliketo testis that theevolution
ofSSSscanleadto arateofChandrasekhar-massexplosionsconsistentwiththe
rateofobservedTypeIasupernovae.Inthisscenario,aC-O white dwarf accretes

hydrogen from a companion in either a close-binary supersoft source (CBSS) or

a wide-binary supersoft source (WBSS). The hydrogen burns to helium, but is
likely to burn through to heavier elements before a helium mantle can develop.

Thus, if the white dwarf started with an initial mass less than -,_ 1.2Mo, we are

likely to witness a "classic" Chandrasekhar-mass Type Ia supernova explosion
of a C-O white dwarf.

A second hypothesis we would like to test is that SSSs could lead to sub-

Chandrasekhar-mass explosions. Presumably, this would require that a signif-
icant helium mantle would be able to develop, and may therefore be unlikely.

Nevertheless we keep track of the numbers of systems in which the white dwarf

accretes as much as -_ 0.2M_.

A third hypothesis, is that the explosions are actually triggered in CBSSs

and WBSSs in which the binary evolution breaks down, and a common envelope

ensues, leading to the merger of the white dwarf with the core of the donor.
If the donor has a helium core at the time the common envelope commences,

then the merger might lead to something like a sub-Chandrasekhar explosion.

If, however, the donor has a C-O core (as could be the case for WBSSs), then

the merger process could possibly produce a composite object with mass greater

than or equal to Mc.

In practice, we find that events of all three types are associated with the

evolution of CBSSs and WBSSs. It is the computation of the relative rate that

is complicated by difficulties in computing the fraction of CBSSs and WBSSs

that can survive as viable mass transfer binaries without experiencing a common
envelope. It is interesting to note, however, that whatever the eventual break-

down of the relative rates, all of these types of events are predicted by the SSS
models and should be observed.

3 Recent Work

3.1 Quantifying the Problems

As discussed by DN, the condition that the donor continuously fill its Roche

lobe, together with the conservation of angular momentum, leads to an equation

for rh, the mass loss rate of the donor of the following generic form.

m'D =,V" (1)

D has a functional dependence on fl, which is itself a function rh. Thus, equation

(1) can be viewed as a non-linear equation for rh. There are problems with



SSSsasProgenitorsofTypeIa Supernovae 5

stabilitywhenD passes through zero and/or is negative. In general D can be

written as .A +/3B. If D is negative for all/3 > 0, we will say that the system

is in class I; systems in class I cannot be evolved using the standard formalism.

A system will be said to be in Class II if there is a value of/3 = /3c,.it, such
that 7) is positive only for/3 </3c,-it; the evolution of systems in class II can be

started, but will fail as the rate of mass transfer increases, if/3 becomes equal to

or exceeds /3crit. A system will be said to be in Class III if D is positive for all
values of/3 < 1; systems in class III can be evolved from start to finish.

Using as input the systems that emerge as CBSS candidates from the popu-

lation synthesis study of RDS, DNLWR found the following statistics. (1) Across
a range of assumptions about the properties of primordial binaries and the value

of a, the common envelope ejection factor, the rate at which CBSS candidate

systems are formed in a galaxy such as our own is ,,_ 0.5- 1.0 per century. This
is just _ 2 - 3 times as large as the rate of Type Ia supernovae inferred from
observations. The rate at which WBSS candidates are formed is more sensitive

to input assumptions about a, but can be comparable to the CBSS formation

rate. (2) Across the same range of assumptions, we found that between 45 - 72%

of all CBSS systems were in class I and therefore could not be evolved. Between

10 - 20% of all systems were in class II; their evolution crashed sometime after

beginning, generally as the system approached the steady nuclear burning region.

Between 17 - 36% of all systems were in class III and could therefore be fully

evolved. The story these statistics tell is somewhat more damning than may be

obvious at first, since the systems in class III typically either have a mass ratio,
q = m/M (where m is the mass of the donor and M is the mass of the white

dwarf), that is small (i.e., not much greater than unity), or else contain donors

that are not very evolved. The associated mass transfer rates therefore tend to

be small; the system does not spend much time in the steady nuclear burning

region, and the white dwarf does not grow significantly. Thus, even though (and

in some sense because) systems in class III can be followed, they tend not to

be good candidates even for sub-Chandrasekhar Type Ia supernovae. Table 1
illustrates the range of results we obtained.

3.2 The Role of Mass Ejection

Table 1 illustrates two important features. First, for the population synthesis

study of RDS, the majority of systems cannot be evolved using the standard for-

malism; they would seem to be candidates for a phase of common envelope evo-

lution and possible mergers. Second, if the retention factor,/3 can be small-i.e.,

if the white dwarf can eject incident material it cannot burn, then a large enough
fraction of systems may survive as viable binaries, to allow CBSSs to account for

a significant fraction of either Chandrasekhar-mass or sub-Chandrasekhar-mass

explosions. This is the point illustrated by the last row of the table, in which
an "optimistic" treatment was used: all systems for which D was less than zero,

were artificially saved, until the system parameters changed enough to increase

D above zero. This treatment is not realistic and was designed to give us an
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Table 1. Classification of CBSS candidates by retention-factor

Set Case /3_r,t < 0 /3crit E [0, 1] /3_r,t > 1 M -- 1.4M® AM > 0.2
Class I Class II Class III

1 CON 0.72 0.10 0.18 0.012 0.10

2 CON 0.67 0.12 0.21 0.009 0.02

3 CON 0.73 0,10 0.17 0.012 0.10

4 CON 0.53 0.15 0.32 0.015 0.16

5 CON 0.51 0.18 0.31 0.016 0.14

6 CON 0.45 0.20 0.36 0.018 0.18

6 OPT 0.45 0.20 0.36 0.55 0.81

Summary of the results of evolutionary calculations. "Set" refers to the data sets of

CBSS candidates that emerge from each of 6 population synthesis studies we have

carried out along the lines described in RDS. Note that there is relatively little vari-

ation among the results derived for different data sets. "Case" refers to the class of

evolutionary "treatment" used to evolve the CBSS candidates. There are two classes

of treatment, conservative (CON) and optimum (OPT). The numbers in each column

represent the average fraction of systems that fall into the category indicated by the

column headings. A treatment is characterized by the values of the parameters used

in the evolution of the CBSS candidates. These include al and a2 (see DN), and the

value of _od. In rows 1 - 6, the average of the results for 9 separate conservative treat-

ments is shown. In our standard conservative treatment, _d = 4, al = 2, and a2 = 1.

Although the results for individual treatments are not shown, we note that the results

among the conservative treatments are not generally dramatically different for different

treatments. The exception is for _ = 10. This case tends to maximize the value of

/_, so that all systems can be evolved; we find however, that the mass transfer rates

tend to be so low that no system reaches 1.4M o. In row 7, the results for the optimum

treatment, which has been applied here only to data set 6, are shown. The evolutionary

parameters are the same as those for the standard conservative treatment; when D < 0,

however,/3 is chosen so as to set D equal to :Din,.. Note that all systems in Class I and

some in Class II are candidates for mergers.

upper limit. The fact that the upper limit so-derived is in the range of observed

rates, illustrates the significant role played by mass ejection in the computation

of the Type Ia supernovae rates.

It has since been discovered (HKN) that there are steady state solutions

in which the white dwarf can eject the matter that it cannot burn. This is a

potentially important result. Together with several other steps, it should help

us to better quantify the Type Ia supernovae rate associated with SSSs. The

additional needed developments include the following. (1) A population synthesis

study which differs from that of RDS in including the effects of winds prior to
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the first common envelope phase. This has already been done by YLTTF, and

by DN. The results are to move some systems from class I into class II. (2) The
inclusion of radiation-driven winds. This allows us to evolve some systems in class

II that would otherwise fail. We find, though, that this by itself does not lead to
a significant increase in the number of systems in which the white dwarf accretes

-_ 0.2M o or more. (3) Implementing the full non-linear solution to Equation (1).
This will allow us to better determine which systems in class II can actually be

saved (Di Stefano 1996a). (4) Explicitly including a common envelope phase for
those systems in which the binary evolution fails. This will allow us to better

quantify the number of merger events expected. (5) Completing a full population
synthesis study, including evolution, for wide-binary supersoft sources.

Work along these lines is underway and should help us to narrow the un-

certainties in computations of the rate of Type Ia supernovae associated with
luminous supersoft X-ray sources.

4 Predictions and Tests of the Model

A promising coincidence of computed and observed rates would not be conclusive

evidence that the model is the unique correct Type Ia progenitor model. What

would be needed in addition are testable physical predictions that go beyond
rate computations. In this section we focus on two types of test. The first is

the identification of individual progenitors, and the second is post facto study

of supernovae and their remnants for "secondary characteristics" (Branch et al.

1995) that may be related to properties of the progenitor.

4.1 Searching for Progenitors

One way to definitively identify progenitors is to observe a system before it
experiences an explosion. The problem with this approach is the events are

rare. To date, no Type Ia supernova progenitors have been identified. If the

rate of events is ,,- 0.3 per century per galaxy, we would need to have detailed

prior information about ,-_ 30 galaxies to have a good chance of identifying a

progenitor sometime in the next decade. To test the supersoft source progenitor

models we therefore ask if the distinctive signatures of SSSs would help us to

identify the site of a progenitor in a distant galaxy.

X-Ray Observations" As part of the study of the detectability of SSSs,

DiStefano & Rappaport (1994) seeded the Magellanic Clouds and M31 with

SSSs drawn from a distribution generated by using the CBSS model. Because

steady nuclear burning white dwarfs of higher mass tend to be hotter and more

luminous, we found that the sources most likely to be detected in M31 were

those with high-mass white dwarfs. This is illustrated in Figure 1.
Note that ROSAT's study of M31 should have detected evidence of all steady

nuclear burners with M > 1.2M_. (See Greiner J. et at., this volume: Greiner,
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Fig. 1. The uppermost curve represents all active CBSSs as calculated by RDS. The
middle (low) curve shows only systems that would likely have been detected by ROSAT
in the LMC/SMC (M31).

Hasinger, & Kahabka 1991; Greiner, Hasinger, & Thomas 1994; Kahabka, Pietsch,

Hasinger 1994; Schaeidt, Hasinger, Triimper 1993; Supper et al 1995; Tr/imper

et al. 1991.) An important caveat is that the system should not be self-obscured,
by a heavy wind, for example. This selection effect, favoring X-ray detection of

systems with high-mass white dwarfs, becomes more pronounced as the distance

to the host galaxy and/or absorption increases. Deep images of the most dis-

tant galaxies in which sources can be detected and resolved by X-ray satellites

would therefore seem to provide potentially promising ways to identify possi-

ble progenitors. This is especially true if the Chandrasekhar-mass models are
correct.

Observations of Supersoft Nebulae The radiation emitted by SSSs is highly
ionizing. If the sources are housed in an ISM with a local number density, n,
of more than ,_ 1 - 2 cm -3, they may be expected to exhibit an ionization

nebula with high enough surface brightness to be detected, and with distinctive

properties (Rappaport, Chiang, Kallman, and Malina 1995; Chiang 1996). The

central source is capable of maintaining the ionization of O(100)M®, with, for

example, _ 2 - 8% of the bolometric luminosity emerging in the A5007 line of
[O III]. We will refer to these distinctive nebulae as supersoft nebulae. CAL 83

is associated with a nebula that fits the general expectations computed for a
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supersoftnebula(PakullandMotch1989;Remillard,Rappaport,andMacri
1995[RRM]).At thedetectionlimit of RRM,nootherSSSin theMagellanic
Cloudsexhibitssucha nebula.It is unknownwhatfraction(1) of thesources
discoveredto date,and(2)of all activeSSSs,maybeassociatedwithsupersoft
nebulae.

DiStefano,Paerels,andRappaport (1995; DPR) noted that at least some

supersoft nebulae should have luminosities in [O III] A5007 comparable to tile

cut-off of the planetary nebula luminosity function (PNLF). (See Figure 2.)
The PNLF is used to determine extragalactic distances (see, e.g., Jacoby et al.

1992, Jacoby and Ciardullo 1993). Comparison between the SNLF and the PNLF

therefore indicates that, if there are significant numbers of supersoft nebulae in

distant galaxies, we should be able to detect individual SSSs in galaxies at least
as far from us as the Virgo cluster. Planetary nebula surveys have been and are

continuing to be carried out for dozens of galaxies. Thus, there is some chance
that a coincidence between the location of a nebula and the site of a later Type

Ia supernova explosion could be observed during the next decade, if SSSs can

be progenitors of Type Ia supernovae (DiStefano 1996b). Features which call

help to distinguish between supersoft nebulae and planetary nebulae have been

considered by DPR. It is interesting to note that supersoft nebulae are more
efficient emitters in the [O III] line when the temperature of the central source

is moderate, and the mass of the white dwarf is smaller than 1.2M o. This is

illustrated in Fig. 3.

Thus, while X-ray detection of SSSs in external galaxies is most likely to

test and constrain Chandrasekhar-mass models, detection of supersoft nebulae

in distant galaxies is most likely to test and constrain sub-Chandrasekhar-mass
models.

4.2 Predicting Supernova Characteristics

Observational work that may allow us to eventually identify individual progen-

itors is exciting, but the returns are necessarily uncertain. On the other hand,

we know that ongoing search programs for supernovae will certainly lead to the

study of dozens of Type Ia supernovae during the next decade. Thus, if a set

of tests to be applied to each observed explosion could be devised to assess the

likelihood that the progenitor was a SSS, we might have a better chance of ver-

ifying or falsifying the hypothesis that SSSs are the progenitors of a significant
fraction of Type Ia supernova explosions.

Branch et al. 1995 discussed a range of so-called "secondary characteristics"

of supernovae that could be used to constrain progenitor models. For example,
the amount and distribution of circumstellar matter can be checked via radio

observations. (See, e.g., Boffi & Branch 1995, Eck et al. 1995.) Evolutionary cal-

culations allow us to compute the total amount of mass ejected by each system

and to follow the time history of mass ejection. In ongoing work, both for wide-

and close-binary systems, we are therefore tracking mass ejection. Our calcula-

tions also allow us to compute the ionization state of any local ISM (as well as
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Fig. 2. The top panel shows the supersoft nebula luminosity function (SNLF) in [O III].

The normalization is not known; if, e.g., 10% of all SSSs have supersoft nebulae, then a

total of O(100) supersoft nebulae may be expected to exist in a galaxy such as our own.

The bottom panel shows the empirically-derived planetary nebula luminosity function

(PNLF).
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Fig. 3. The distribution of [O III] luminosities as a function of white dwarf mass.

(Di Stefano 1996b)

that of ejected material) prior to the explosion; post-explosion limits on these

quantities are also possible to obtain (see, e.g., Kirshner, Winkler & Chevalier

1987, and Smith et al. 1991).

5 Conclusions

The possibility that supersoft sources are progenitors of Type Ia supernovae is

intriguing. There are many hurdles to be gotten over, however, before we can

properly assess the situation.

One small hurdle has already been passed. That is, we have established that

the pool of close-binary supersoft sources and wide-binary supersoft sources is

large enough that, should a substantial fraction of the systems lead to super-

novae, the rate of explosions could be comparable to the rate inferred from

observations. This result emerges in a straightforward way from population syn-

thesis analyses. It is interesting that the rate at which candidate progenitors are

formed is, in most of our simulations, just a few times larger than the required

rate. Thus, if less than 0.1 of the candidates could become supernovae, the rate

of explosions due to SSSs would constitute only a small fraction of the requisite

rate.

The main hurdle, then, is to determine what fraction of the candidates are

actually supernova progenitors. This is a difficult problem. Solving it requires
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makingadvancesin thestudyof the binaryevolutionof systemsin whicha
moremassiveandpossiblyquiteevolvedstardonatesmassto a whitedwarf
companion.It seemspossiblethat recentandongoingworkmayhelpusto
determinethefractionof candidatesystemsthat cansurviveasviablebinaries
in whichthewhitedwarfaccretessignificantmass.Eventhebinariesthat do
experiencecommonenvelopesareinteresting,anddeterminingtheratesof all
possibleoutcomesis thereforeimportant.

Whatevertheoutcomeof theratecalculations,theabilityto evolveindivid-
ualsystemsallowsusto computesomefeaturesof the post-explosionsystem
relatedto thetotalamountof massejectedor to thestateof ionization.Such
calculationsmayhelpusto constraintheSSSmodelsfor TypeIa supernova
progenitors.Further,X-rayandnebularobservationsofgalaxiesmayeventually
providecomplementaryconstraintsontheprogenitormodels.

In summary,thestatusofSSSsasprogenitorsofTypeIa supernovaeisstill
uncertain.Butthereareclearlinesofinvestigationthatshouldhelpustonarrow
theuncertainties.
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